Review Article

International Journal for Asian Contemporary Research (IJACR)

www.ijacr.net

Identification of Fruit Flies (Diptera: Tephritidae) at Species Level: The Molecular Technique is an Effective Tool

Sultana Afroz^{1*} and Md. Rashedul Islam²

¹Department of Agriculture Extension, Ministry of Agriculture, Bangladesh.

Article info

Received: 16 April, 2021
Accepted: 19 May, 2021
Published: 19 May, 2021
Available in online: 21 May,

2021

*Corresponding author:

safroz_dae@yahoo.com

Link to this article:

https://www.ijacr.net/upload/i jacr/2021-12-1007.pdf

Abstract

Today's technology enables us to precisely identify any living thing using a single cell. This technology uses molecular probes that bind only to the DNA of targeted organisms, is based on gene amplification that multiplies a million-fold the DNA of interest, and involves comparing specific pieces of DNA between organisms. There are two important advantages of molecular identification over conventional techniques of microscopic examination that means morphological identification. Identification can be made using a very small amount of material and is much more accurate than with previous methods-a species, a population, or even an individual can be identified. So in accurate species identification, no doubt about the molecular method. For fruit fly identification, the molecular method based on PCR-RFLP, DNA barcoding of the *COI* gene and/or polymerase chain reaction (PCR) with species-specific primers is the commonly used and accurate method of identifying species level.

Keywords: Fruit fly, DNA barcoding, *COI* gene, economic important and species specific primers.

Introduction

Fruit flies (Family Tephritidae) constitute a group of agricultural pests of worldwide importance that attack a wide range of fruits and vegetables (White et al., 1992). Numerous fruit fly species cause enormous threats to fruit and vegetable production globally, exerting both quantitative and qualitative losses. However, few insect species have a more significant impact on world trade in agricultural produces than tephritids fruit flies (FAO/IAEA 2013). Direct damage of fruit flies are associated with dropping of fruits and rendering of inedible fruits. Besides, the direct damage to fruits and indirect losses are associated with quarantine restrictions imposed by importing countries to prevent the entry and establishment of exotic fruit fly species (Ekesi, 2012). There are nearly 5000 described species of tephritids fruit fly, of which approximately 350 are considered economically significant. These primarily belong to five

genera: Anastrepha Schiner, Bactrocera Macquart, Ceratitis Macleay, Dacus Fabricius and Rhagoletis Loew (Van Houdt et al., 2010). More than 70 fruit fly species are considered as important worldwide agricultural pests, and many others are minor or potential pests (White and Elson-Harris, 1992). The genus Bactrocera is the most economically significant fruit fly genus, with at least 50 species considered important pests, many of which are highly polyphagous (White et al., 1992).

A critical aspect of prediction and also monitoring is the ability to accurately identify any intercepted specimen to the species level (Armstrong and Ball, 2005). Therefore, accurate identification is essential in host fruit surveys and for species found in fruits destined for export, distinguishing exotic from native fauna (Armstrong and Ball, 2005). These limitations associated with morphological identification have been an impediment in decision-making regarding fruit fly infestations at

²Lincoln University Missouri, USA.

quarantine checkpoints and implementing appropriate management programs for tephritids fruit flies. In effect, researchers have developed other valuable alternative ways of fruit fly identification involving molecular markers. Currently, PCR-RFLP (Polymerase Chain Reaction Restriction Fragment Length Plymophism) and DNA barcoding of the cytochrome oxidase c subunit I (COI) gene are becoming the preferred molecular method to assist in precise and rapid identification of fruit fly species at any stage of development (PHA, 2011). Some recent studies have also used polymerase chain reaction (PCR) with species-specific primers to overcome the need for post-amplification digestion and thus allowing more DNA sequencing. identification (Chua et al., 2010; Zhang et al., 2012). In this review, we discussed which method(s) is/are suitable for identifying fruit fly species.

Limitations of Morphological identification method

Many species of these tephritid fruit flies are morphologically similar. Still, they differ in their behavior, such as reproductive potentials, competitive abilities, and dispersive power (Duyck et al., 2004). They thus have different potential impacts on food production and implications for biosecurity and market access. In addition, the immature stages of different genera are morphologically indistinguishable and are the most likely life stages to be intercepted in food produce (Blacket et al., 2012). Moreover, in host fruit surveys, immature stages of different genera have been found to share the same fruit (Copeland et al., 2006; Ekesi et al., 2006) yet with no morphological diagnostic features. Uncertainty in species limits based on the traditionally used morphological features, together with overlapping host and geographic ranges, significantly impacts quarantine, pest management, and general biological studies (Clarke et al., 2005).

Molecular identification

Genetic markers and sequences from the mitochondrial genome, in particular, have proven to be very informative in the study of species diversity and evolutionary processes (Xie *et al.*, 2006). This is due to some of its peculiarities, such as strictly maternal inheritance, absence of recombination, a relatively high mutation rate, and last but not least, the availability of efficient PCR primers (Simon *et al.*, 1994) and a wealth of comparative data (Xie *et al.*, 2006). Mitochondrial *cytochrome oxidase subunit I (COI)* sequences were shown to be appropriate for intra-specific analysis because of the high degree of polymorphism observed. Additionally, *COI* sequences are at the base of the barcoding identification system (Hajibabaei *et al.*, 2006).

Besides being a valuable tool for species identification and discovery, it has been proposed as a powerful methodology in biosecurity and invasive species identification (Armstrong and Ball, 2005). Currently, this tool has been applied in pest monitoring and quarantine (Armstrong and Ball, 2005). Its usefulness has been confirmed in several hexapod orders: Coleoptera (Lobl and Leschen, 2005), Diptera (Scheffer et al., 2006), Ephemeroptera (Ball et al., 2005), Hemiptera (Lee et al., 2011), Hymenoptera (Smith et al., 2008) and Lepidoptera (Hajibabaei et al., 2006). Species identification is achieved by comparing the sequence of an unknown sample to a reference database through similarity methods such as BLAST (Altschul et al., 1990). The reliability of identification depends on the extent of taxonomical coverage of the group of interest and an understanding of the degree of variation within species (Lee et al., 2011).

A case study on tephritid fruit flies (Armstrong and Ball, 2005) reported high rates of success, but also mentioned some difficulties with the identification of a few species (e.g. B. dorsalis, B. cucurbitae, A. fraterculus), where the occurrence of cryptic species, inadequate sampling of all genetic subgroups, and high levels of geographic differentiation might complicate identification. However, broader ad hoc surveys of the phylogeography and geographic variability in species might provide valuable additions to the barcoding dataset and its applicability in difficult groups. Modern control strategies, such as semiochemicals, sterile insect techniques, and foreseeable genetic tools, are strictly species/strain-specific and require a deep knowledge of taxonomy and population structure of the target. This necessity becomes even more sensible when dealing with insect groups characterized by sibling species, such as mosquitoes and tephritid fruit flies (Hu et al., 2008).

Zhang et al. (2010) studied 689 bp nucleotide sequences of the mitochondrial cytochrome oxidase I gene of thirty-five individuals representing 7 Bactrocera species found in the Chongqing region in China and GenBank submitted sequences for another 20 Bactrocera species and 2 tephritid species, Anastrepha ludens and Ceratitis capitata, which were used as outgroups for the phylogenetic analysis. They reported Bactrocera (Tetradacus) minax and Bactrocera (Zeugodacus) diaphora sequences for the first time, and the subgenus Bactrocera (Tetradacus), represented by B. (T.) minax and B. (T.) tsuneonis, was included for the first time in an analysis of the genus Bactrocera phylogeny.

Zhang *et al.*, (2010) observed that nucleotide diversity within subgenus ranged from 9.1 to 19.0% among the subgenera, and the net divergence among subgenera ranged from 4.6 to 12.7%. Phylogenetic analysis based on maximum parsimony method supported that subgenus

Bactrocera (Bactrocera) and Bactrocera (Zeugodacus) are paraphyletic. The subgenus Zeugodacus, Bactrocera (Zeugodacus) caudate, Bactrocera (Zeugodacus) diaphora, and Bactrocera (Zeugodacus) scutellata are closely related to Bactrocera (Zeugodacus) tau and Bactrocera (Zeugodacus) cucurbitae. These results indicated that subgenus Austrodacus and Zeugodacus, which attack cucurbit plants, are closely related to the subgenus Afrodacus, Bactrocera, and Gymnodacus, which attack plants of numerous families.

Earlier phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were studied by Smith et al. (2003) with DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNALys, and tRNAAsp genes suggested (1) the genus Bactrocera is monophyletic, (2) the subgenus Zeugodacus is paraphyletic, (3) the subgenus Daculus is a sister group to subgenus Bactrocera and (4) the subgenus Bactrocera is monophyletic. Asokan et al. (2011) reported the mtCOI based identification of three fruit flies, B. dorsalis, B. correcta and B. zonata where molecular identification has corroborated morphological identification. A single fragement of approximately 500 bp was amplified for B. dorsalis, B. correcta and B. zonata. Sequencing results showed that the total nucleotide length obtained was 440 bases for all three species of fruit flies. The alignment of the above sequences in Bioedit revealed 92% similarity between B. dorsalis and B. correcta and between B. correcta and B. zonata. The number of nucleotides that were different between B. dorsalis and B. correcta and between B. correcta and B. zonata was 32 and 28, respectively. The highest variation (11%) was observed between B. dorsalis and B. zonata, where there was difference in 45 nucleotides. Bactrocera cucurbitae populations sampled throughout Southern China, Thailand, and the Philippines by Hu et al. (2008). They observed that these populations were genetically very similar and most likely constitute a single phyletic unit with no sign of cryptic species or historical separation based on the mitochondrial cytochrome oxidase I gene analysis. They also observed that a single haplotype predominates throughout this region. However, interspecific distances with outgroups ranged from 0.051 between B. cucurbitae and B. tau to 0.167 between B. cucurbitae and B. dorsalis.

Shi *et al.* (2005) conducted an analysis of population genetic structure of *B. dorsalis* from China using mitochondrial *cytochrome oxidase* (*COI*) gene sequences. They observed twenty-eight haplotypes among 37 individuals with up to 13 mutations, and genetic distances reached 2.2% between haplotypes. They also observed many haplotypes were missing in the sampled populations in the haplotype network. However,

43 haplotypes were observed in the six Bactrocera dorsalis populations (71 individuals) with up to 12 mutations from China using COI gene sequences by Liu et al. (2009). B. tau is a major cucurbit pest. Morphologically, members of the *B. tau* complex show differences in the three yellow stripes on the thorax, along with the size and shape of dark bands on the dorsal abdomen. However, some species of the B. tau complex could not be easily distinguished morphologically. Mitotic karyotype and electrophoresis analyses of the B. tau complex have been useful tools for separating these closely related species. However, the methods are somewhat tedious and time-consuming (Baimai et al., 2000). Analysis of mitotic karyotypes of the larvae belonging to the same species of adult fruit flies morphologically identified as B. tau s.s. and B. tau-like species has revealed seven distinct chromosomal forms which are most likely to represent seven closely related species within the *B. tau* complex. All members of the *B*. tau complex in this study exhibited mitotic karyotype 2n=12, conforming to the other species groups of the genus Bactrocera as previously described (Baimai et al., 2000). Jamnongluk et al. (2003) compared sequences of the mitochondrial cytochrome oxidase I gene of eight species of the Bactrocera tau complex from Thailand using Bactrocera dorsalis, Bactrocera pyrifoliae, Ceratitis capitata, Anopheles gambiae, and Locusta migratoria as outgroups. The sequence divergence between species in the B. tau complex ranged from 0.06 to 28%, and up to 29% between the complex and its tephritid outgroups, B. dorsalis and C. capitata.

DNA barcodes and barcoding

Hebert *et al.* (2003a, b) proposed a technique for amplifying a 648 bp region of the mitochondrial *cytochrome-c oxidase subunit 1 (COI)* gene to ensure rapid and accurate identification of a wide range of biological specimens. Then, the Life Barcode project was introduced to encourage DNA barcoding as a global standard for sequence-based eukaryote identification. This project was formally launched in 2004 by the establishment of the Consortium for the Barcode of Life (CBOL), which aims to create a standard DNA barcode protocol and build a comprehensive DNA barcode library (Jinbo *et al.*, 2011).

Nowadays, DNA barcoding has become a powerful tool for successful identification of fruit flies. On the basis of the COI gene, several rapid diagnostic approaches have been established, such as real-time PCR, PCR-RFLP (restriction fragment length polymorphisms), microfluid dynamic array techniques and loop-mediated isothermal amplification (LAMP). Such methods were successfully implemented in identifying several economically important fruit fly species. *Armstrong et al.* (2005)

studied the COI sequences of fruit fly samples collected from New Zealand ports, and the findings were compatible with the previous results of the constraint fragment duration polymorphisms (RFLPs). However, identification using DNA barcodes detected species which could not be recognized by RFLP analysis (Armstrong et al., 2005). The DNA barcoding (amplification of the sequence by COI gene) method was applied to identify the larvae which were collected from guava fruit of Thailand, resulting in the identification of B. correcta (Buahom et al., 2011). Barr et al., (2017) only differentiated four species of Anastrepha (Anastrepha grandis, A. serpentine, A. ludens, and A. striata) based on barcode data, though they used 539 DNA sequence from 74 species. Out of 10 species of Bactrocera, eight species were easily distinguished by Manger et al. (2018) based on the standard DNA barcoding region of the COI gene. Moreover, the drawbacks of this approach are also noticeable, as it is costly and time-consuming.

Species specific primers

In some studies, polymerase chain reaction (PCR) with species-specific primers have also been used to resolve the need for post-amplification digestion and DNA sequencing that enables quicker identification (Chua et al., 2010). The two pairs of species-specific primers were successfully developed by Chua et al. (2010) on the basis of 1517 bp of the mtDNA COI gene that could distinguish B. carambolae and B. papayae under normal PCR testing conditions. Asokan et al. (2011) developed species primers based on DNA barcode sequences for the identification of B. dorsalis and B. zonata, and this approach could accurately classify all life stages of the target species. Zheng et al. (2019) developed two pairs of species-specific primers that can easily identify all developmental stages of B. minax and B. tsuneonis, which is very cost-effective molecular method of identification.

Conclusion

Fruit fly species have been a serious threat to agriculture in worldwide. Morphological identification sometimes creates misidentification in adult stages, while in egg, larvae and pupal stages are totally difficult. Molecular techniques also offer a considerable advantage over traditional morphological forms of fruit discrimination as well as within host-parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and laborintensive rearing methods. For rapid identification. polymerase chain reaction (PCR) with species-specific primers method is very effective, which can be used in quarantine stations. However, DNA barcoding proves an effective tool that can be employed for species identification, elucidation of cryptic species, biotypes, and the discovery of new species.

Conflict of interest

Authors have no conflict of interest.

References

- Altschul, S. F., Gish, W., Miller, W., Myers, E.W., & Lipman, D. J. (1990). Basic local alignment search tool, *Journal of molecular biology*, 215, 403–410.
- Armstrong, K.F., & Ball, S.L. (2005). DNA barcodes for biosecurity: Invasive species identification. Philos. Trans. R. Soc. B. 360, 1813–1823.
- Asokan, R., Rebijith, K.B., Singh, S.K., Sidhu, A.S., Siddharthan, S., Karanth, P.K., Ellango, R., & Ramamurthy, V.V. (2011). Molecular identification and phylogeny of Bactrocera species (Diptera: Tephritidae), *Florida Entomologist*, 94, 1026–1035.
- Baimai, V., Phinchongsakuldit, J., Sumrandee, C., & Tigvattananont, S. (2000). Cytological evidence for a complex of species within the taxon *Bactrocera tau* (Diptera: Tephritidae) in Thailand, *Bio J Linn Soc*, 69:399–409.
- Ball, S.L., Hebert, P.D.N., Burian, S.K., & Webb, J.M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. *Journal* of the North American Ethnological Society, 24, 508–524.
- Blacket, M., Semeraro, L. & Malipatil, M. (2012). Barcoding Queensland fruit flies (*Bactrocera tryoni*): impediments and improvements. *Molecular Ecology Resources* 12: 428–436.
- Buahom, N., Li, Z.H., Wu, J.J., & Liu, J.Q. (2011). Molecular identification of fruit fly larvae from Thailand based on DNA barcoding. *Plant Quar*. 25, 49–52.
- Chua, T.H., Song, B.K. & Chong, Y.V. (2010). Development of allele-specific single-nucleotide polymorphism-based polymerase chain reaction markers in cytochrome oxidase I for the differentiation of Bactrocera papaya and Bactrocera carambolae (Diptera: Tephritidae). *Journal of Economic Entomology*, 103, 1994–1999.
- Chua, T.H., Song, B.K., & Chong, Y.V. (2010). Development of allele-specific single-nucleotide polymorphism-based PCR markers in COI for the differentiation of *B. papayae* and *B. carambolae* (Diptera: Tephritidae). *J. Econ. Entomol.* 103, 1994–1999.

- Clarke, A.R., Armstrong, K.F., Carmichael, A.E., Milne, J.R. & Raghu, S. (2005). Invasive phytophagous pests arising through a recent evolutionary radiation: the *Bactrocera dorsalis* complex of fruit flies. *Annual Review of Entomology* 50: 293–319.
- Copeland, R.S., Wharton, R.A., Luke, Q., De Meyer, M., Lux, S., Zenz, N., Machera, P. & Okumu, M. (2006). Geographic distribution, host fruit, and parasitoids of African fruit fly pests *Ceratitis anonae*, *Ceratitis cosyra*, *Ceratitis fasciventris*, and *Ceratitis rosa* (Diptera: Tephritidae) in Kenya. *Annals of the Entomological Society of America* 99: 262–278.
- Duyck, P.F., David, P. & Quilici, S. (2004). A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). *Ecological Entomology* 29: 511–520
- Ekesi, S. (2012). Combating fruit flies in Eastern and Southern Africa (COFESA): elements of a strategy and action plan for a regional cooperation program. Online at: http://www.globalhort.org/media/ uploads/File/Fruit% 20Fly/ Fruit% 20fly% 20Issue% 20 Paper% 2010.05.2010-1.pdf (accessed 19August 2012).
- Ekesi, S., Nderitu, P.W. & Rwomushana, I. (2006). Field infestation, life history and demographic parameters of *Bactrocera invadens* Drew, Tsuruta and White, a new invasive fruit fly species in Africa. *Bulletin of Entomological Research*, 96: 379–386.
- FAO/IAEA. (2013). Trapping guidelines for area-wide fruit fly programmes. Online at: http://www-pub.iaea.org/MTCD/publications/PDF/TG-FFP_web.pdf (accessed 12 December 2013).
- Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. *et al.*, (2006). DNA barcodes distinguish species of tropical Lepidoptera. *Proceedings of the National Academy of Sciences USA*, 103: 968–971.
- Hebert, P.D.N., Cywinska, A., Ball, S.L., & deWaard, J.R. (2003a). Biological identifications through DNA barcodes. Proceedings of the *Royal Society of London*, Series B, 270, 313–321.
- Hebert, P.D.N., Ratnasingham, S., & deWaard, J.R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society of London*, Series B. 270, S96–S99.
- Hu, J., Zhang, J. H., Nardi, F., & Zhang, R. J. (2008). Population genetic structure of the melon fly, *Bactrocera cucurbitae* (Diptera: Tephritidae),

- from China and Southeast Asia, *Genetica*, 34:319–324.
- Jamnongluk, W., Baimai, V., & Kittayapong, P. (2003). Molecular evolution of tephritid fruit flies in the genus *Bactrocera* based on the *cytochrome* oxidase I gene. Genetica 119:19–25
- Jinbo, U., Kato, T., & Ito, M. (2011). Current progress in DNA barcoding and future implications for entomology. *Entomol. Sci.* 14, 107–124.
- Lee, W., Kim, H., Lim, J., Choi, H., Kim, Y., Ji, J., Foottit, R.G. & Lee, S. (2011). Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. *Molecular Ecology Resources* 11, 1–6.
- Liu, J.Q., Deng, Y.L., Li, Z.H., Bai, Y.H., & Huang, L. G. (2009). Advances in molecular biology of *Bactrocera* (*Bactrocera*) correcta. Plant Quarant 35:11–14 (in Chinese with English summary)
- Lo"bl, I., & Leschen, R.A.B. (2005). Demography of Coleopterists and Their Thoughts on DNA Barcoding and the Phyllopod, with Commentary. *The Coleopterists Bulletin*, 59, 284–292.
- Manger, A., Behere, G.T., Firake, D.M., Sharma, B., Deshmukh, N.A., Firake, P.D., Thakur, N.S.A., & Ngachan, S.V. (2018). Genetic characterization of Bactrocera fruit flies (Diptera: Tephritidae) from Northeastern India based on DNA barcodes. *Mitochondrial DNA*. A 29, 792–799.
- PHA (PLANT HEALTH AUSTRALIA). (2011). The Australian Handbook for Identification of Fruit Flies. Version 1.0. Plant Health Australia (PHA), Canberra, ACT, Australia.
- Scheffer, S.J., Lewis, M.L., & Joshi, R.C. (2006). DNA Barcoding Applied to Invasive Leafminers (Diptera: Agromyzidae) in the Philippines. *Annals of the Entomological Society of America*, 99, 204–210.
- Shi, W., Kerdelhue, C., & Ye, H. (2005). Population genetics of the oriental fruit fly, *Bactrocera dorsalis* (Diptera: Tephritidae), in Yunnan (China) Based on Mitochondrial DNA sequences. *Environ Entomol*, 34:977–983.
- Simon, C., Frati, F., Beckenback, A., Crespi, B., Hong, L., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Ann Entomol Soc Am* 87:651–701.
- Smith, M.A., Rodriguez, J.J., Whitfield, J.B. *et al.* (2008). Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural

- history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America, 105, 12359–12364
- Smith, P. T., Ambhampati, K., & Rmstrong, A. (2003). Phylogenetic relationships among *Bactrocera* species (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Mol. Phylogenetic Evol. 26: 8-17.
- Van Houdt, J. K. J., Breman, F.C., Virgilio, M & Meyer, M.D. (2010). Recovering full DNA barcodes from natural history collections of Tephritidfruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources, 10, 459–465.
- White, I. M. & Elson-Harris, M. (1992). Fruit Flies of Economic Significance: Their Identification and Bionomics. International Institute of Entomology, London.601 pp.
- Xie, L., Hong, X.Y., & Xue, X.F. (2006). Population genetic structure of the two spotted spider mite (Acari: Tetranychidae) from China. *Ann Entomol Soc Am* 99:959–965.

- Zhang B., Liu, Y. N., Wu, W. X., & Wang, Z.I. (2010). Molecular phylogeny of bactrocera species (diptera: tephritidae: dacini) inferred from mitochondrial sequences of 16s *r*DNA and COi sequences, *Florida Entomologist* 93(3): 369-377
- Zhang, G.F., Meng, X.Q., Min, L., Qiao, W.N. & Wan, F.H. (2012). Rapid diagnosis of the invasive species, Frankliniella occidentalis (Pergande): a species-specific COI marker. *Journal of Applied Entomology*, 136, 410–420.
- Zheng, L., Zhang, Y., Yang, W., Zeng, Y., Jiang, F., Qin, Y., Zhang, J., Jiang, Z., Hu, W., Guo, D., Wan, J., Zhao, Z., Liu, L., & Li, Z.H. (2019). New Species-Specific Primers for Molecular Diagnosis of *Bactrocera minax* and *Bactrocera tsuneonis* (Diptera: Tephritidae) in China Based on DNA Barcodes. *Insects*, 10, 447. Doi:10.3390/insects10120447

This work is licensed under a <u>Creative</u> <u>Commons Attribution 4.0 International License</u>.